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Abstract: This study addresses the significance of randomness for the plastic limit of perfectly plastic solids and

structures. The response to random input is analyzed, the improvement of the load carrying capacity is considered

along with the issue of robustness against randomness, and the probability of failure is explored in the context

of reliability assessment. Application of the theoretical statements is demonstrated on a single as well as simple

example. Eventually, system reliability is discussed for assemblies of structural components.
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1 Introduction

The limit load in perfect plasticity may be considered

as the first of the critical states encountered during the

course of the elastic-plastic deformation process of a

solid [1]. The load multiplier to the limit, the safety

factor, can be determined exactly or approximately by

utilizing the limit load theorems, the static and the

kinematic ones [2], or other methods [3].

The present study deals with the significance of

randomness for the safety factor. In this connection

stochastic analysis is applied in order to obtain mean

and variance as a function of stochastic input in gen-

eral terms [4]. The next step concerns the issue of

optimization in the presence of randomness and com-

prises the task of robustness. This is followed by

reliability considerations regarding the safety of the

solid with respect to the plastic limit. The analysis is

demonstrated throughout by means of a single exam-

ple in order to maintain coherence. Thereby various

input quantities are considered as stochastic variables.

These are, the loading, the geometry and the yield

stress of the material. The discussion of the impact on

the randomness of the safety factor and on the reliabil-

ity of the solid is complemented by a consideration of

the yield stress of the material as a random field within

the solid. An assessment of the reliability, the proba-

bility of success or rather of the probability of failure

by the plastic limit relies on the probability content of

the input variables in the unsafe region; demonstration

is provided. A last step deals with the safety of struc-

tures assembled of components. Given the character-

istics of the components the reliability of the system

is asked for. Series and parallel assemblies are stan-

dard configurations as are also combinations thereof.

In this connection a scheme is presented based on the

safety index of the system expressed in terms of the

individual constituents. For clarity of the exposition,

the theoretical argument is referred to truss structures.

The remainder of the account is organized as fol-

lows. Section 2 recalls the definition of the plas-

tic limit and of the safety factor, the safe load mul-

tiplier. Section 3 deals with randomness presenting

both a probabilistic approach and an approximation of

mean and variance of the safety factor independently

of the specific source of the randomness. Section 4 is

concerned with the improvement of the load carrying

capacity of the solid by optimization and takes care

of the robustness with respect to the randomness of

the input. Section 5 addresses the probability of fail-

ure. Section 6 discusses the theoretical arguments by

means of an example. The considerations refer to the

significance of the random input, demonstrate various

occupations of the input covariance matrix and deal

with the yield stress as a random field. Optimization

of the limit load is attempted by an adjustment of the

geometry of the solid. Section 7 touches the issue of

the reliability of structural assemblies. Section 8 sum-

marizes the essentials and concludes.

2 The Plastic Limit

The plastic limit state of a perfectly plastic solid or

structure is characterized by the existence of a yield

mechanism, that is a kinematically admissible veloc-

ity field u̇(x) which induces exclusively plastic strain

at a rate η̇. The yield mechanism, free of elastic

constituents, enables deformation without change in
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stress σ. The load carrying capacity of the solid is

then exhausted, plastic yielding may occur at constant

load. Volume forces are denoted f , surface tractions

t. The symbols f , t, u̇ and η̇, σ refer to vector ar-

rangements of work conjugate entities, the vector x

specifies the location within the solid.

The rate of work computed with the yield mecha-

nism is

L =

∫

V

f tu̇dV +

∫

A

ttu̇dA. (1)

The integration extends over the volume V of the solid

and the surface area A. The dissipation rate at yield is

D =

∫

V

σtη̇dV, (2)

the stress σ been associated to the plastic strain η̇ by

the applicable flow rule.

The safety factor n as a load multiplier establishes

the limit level in equilibrium with the stress σ in-

volved in dissipation. This implies the work equality,

nL =

∫

V

(nf)tu̇dV +

∫

A

(nt)tu̇dA

=

∫

V

σtη̇dV = D. (3)

Therefrom the safety factor

n =
D

L
=

∫
V
σtη̇dV

∫
V
f tu̇dV +

∫
A
ttu̇dA

. (4)

Safety with respect to the plastic limit requires that

L < D ⇒ n > 1. (5)

For n = 1 the applied load is at the limit level, n < 1
refers to loading beyond the plastic limit.

3 Randomness

3.1 Probabilistic approach

Randomness in the geometry, the material data and in

the magnitude of the imposed loading reflects on the

dissipation rate and the rate of work. The safety factor

n then is a random quantity with the probability char-

acteristics to explore.

In the following randomness of variables will be

indicated by a tilde such that common plastic limit ter-

minology is maintained as far as possible. The proba-

bility distribution function of the safety factor ñ is

Fn(n) = P (ñ < n) = P

(
D̃

L̃
< n

)
. (6)

�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

D

L

D=nL

Figure 1: Domain of integration D/L < n.

If a joined probability density function fL,D(L,D) is

available,

Fn(n) =

∫

D/L

∫

<n

fL,D(L,D)dDdL

=

∞∫

0

nL∫

0

fL,D(L,D)dDdL, (7)

with the domain of integration D/L < n as in Fig. 1.

The probability density function of the safety factor

follows to

fn(n) =
dFn(n)

dn
=

∞∫

0

LfL,D(L, nL)dL

=

∞∫

0

LfL(L)fD(nL)dL. (8)

The second integral in eqn (8) presumes statistical in-

dependence of L̃ and D̃ with individual density func-

tions fL(L), fD(D). In this case the expectation oper-

ations for mean value and variance of the safety factor

give for the mean value

µn = E

[
D̃

L̃

]
= E

[
1

L̃

]
E[D̃] = µ1/LµD, (9)

for the variance

σ2
n = E



(
D̃

L̃
− µD

L

)2



= σ2
1/Lσ

2
D + µ2

Dσ
2
1/L + µ2

1/Lσ
2
D. (10)

A Taylor-series expansion about the mean of the vari-

able L̃ helps approximating mean value and variance

of the inverse.
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3.2 Approximate mean and variance

Despite a desire for exact probabilistic expressions,

it appears advisable to seek appropriate explicit rela-

tionships for the mean and the variance of the safety

factor. Symbolic matrix notation collects the variables

D̃ and L̃ in the random vector

h̃ = {D̃ L̃} with mean µh = {µD µL}. (11)

The Taylor-series expansion of the safety factor ñ =

D̃/L̃ = ñ(h̃) to the second order about the mean of

the vector argument reads

ñ2(h̃) = n(µh) +

(
dñ

dh̃

)

µ
(h̃− µh)

+
1

2
(h̃− µh)

t

(
d2ñ

dh̃dh̃t

)

µ

(h̃− µh). (12)

The derivatives entering eqn (12) are

dñ

dh̃
=

[
∂ñ

∂D̃

∂ñ

∂L̃

]
=

1

L̃
[1 − ñ],

d2ñ

dh̃dh̃t
=

d

dh̃

(
dñ

dh̃

)t

=
1

L̃2

[
0 −1

−1 2ñ

]
. (13)

Evaluation is for the mean values µD, µL.

The expectation of the expression in eqn (12) fur-

nishes the mean value of the safety factor to the sec-

ond order

(µn)2 =
µD

µL

(
1 +

σ2
L

µ2
L

− σLD
µLµD

)
. (14)

The quotient µD/µL refers to the zeroth term of the

Taylor expansion, and σLD = σDL stands for the co-

variance of the rate of work and the dissipation rate.

The first-order approximation of the variance of

the safety factor from eqn (12) involves the covariance

matrix Σh of the argument variables

(σ2
n)1 =

(
dñ

dh̃

)

µ
Σh

(
dñ

dh̃

)t

µ
,

Σh =

[
σ2
D σDL

sym σ2
L

]
. (15)

Executing the matrix operations and rearranging

(σ2
n)1 =

µ2
D

µ2
L

(
σ2
L

µ2
L

− 2
σLD
µLµD

+
σ2
D

µ2
D

)
. (16)

3.3 Sources of randomness

The simple expression of the safety factor n as the

quotient of dissipation rate D and rate of work L sug-

gested a first stochastic approach in this set. Even-

tually the randomness of the system arises from ran-

dom input variables like loading, geometry and mate-

rial parameters arranged in the vector array

α̃ = {α̃1 α̃2 · · · α̃q}. (17)

The dependence

ñ(α̃) =
D̃(α̃)

L̃(α̃)
= ñ[h̃(α̃)] (18)

is case sensitive. The implicit appearance of the in-

put variables α̃ last in eqn (18) should point on the

relationship to the previous considerations in terms of

h̃ = {D̃ L̃}.

The Taylor-series expansion of ñ(α̃) about the

mean µα = {µα1
µα2

· · ·µαq
} is

ñ(α̃) = ñ(µα) +

(
dñ

dα̃

)

µ
(α̃− µα)

+
1

2
(α̃− µα)

t

(
d2ñ

dα̃dα̃t

)

µ

(α̃− µα). (19)

With eqn (19) the second-order mean of the safety fac-

tor in terms of the input variables α̃ is substantiated to

(µn)2 = ñ(µα) +
1

2

q∑

i,j=1

(
d2ñ

dα̃idα̃j

)

µ

σαiαj
. (20)

The first-order variance of ñ is

(σ2
n)1 =

(
dñ

dα̃

)

µ
Σα

(
dñ

dα̃

)t

µ
, (21)

where Σα = {σαiαj
} denotes the covariance matrix

of the random input variables.

Equivalent to the above straightforward approach

in terms of the input variables, a two-step proce-

dure first determines mean and variance/covariance of

dissipation- and work rate because of α̃; then mean

value and variance of ñ are obtained via eqns (14) and

(16).

4 Improving the Load Carrying Ca-

pacity – Robustness

The task concerns an adjustment of design variables to

an improved load carrying capacity. The design vari-

ables z̃ = {z̃1 z̃2 · · · z̃p} and the non-adjustable input
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ỹ = {ỹ1 ỹ2 · · · ỹq−p} are distinguished in the input

vector

α̃ = {ỹ z̃}. (22)

With loading and material fixed the design vari-

ables are geometric in nature; the task objective is the

safety factor ñ(ỹ, z̃). It is requested that the mean

values of the design variables are determined such

that the mean value of the safety factor is maximized

and the variance becomes a minimum for robustness

against input scatter. In mathematical terms:

find µL ≤ µz ≤ µU

minimizing

[
−µn(µz)
σn(µz)

]

subject to µc(µz) + ζσc(µz) ≤ 0. (23)

The design variables may be bounded in the mean by

a lower limit µL and an upper limit µU due to techno-

logical restrictions. The constraint functions enter the

minimization problem by the mean values in µc and

standard deviations in σc. The coefficients in the di-

agonal matrix ζ control the strictness of the constraint.

The values specify the degree to which scatter is tol-

erated: the larger the value the closer the constraint is

met under fluctuating conditions.

The definition of the optimum for the vector-

valued objective in eqn (23) is not unique. Among

various possibilities, a scalar substitute of the problem

relies on the desirability function

G(µZ, ξ) = −(1− ξ)µn(µZ) + ξσn(µZ),

0 ≤ ξ ≤ 1. (24)

This compromises the two requirements by the

weighting factor ξ, and allows the utilization of stan-

dard optimization algorithms. The decision for a de-

sign may be based on a number of optimum solutions

for a variety of ξ-values between the limits ξ = 0 and

ξ = 1 appertaining to the maximum mean and to the

minimum standard deviation of the safety factor.

The following is worth notice in connection with

a first-order expansion of the safety factor about the

mean input. This gives for the mean

µn1 = n(µy,µz), (25)

and for the variance

σ2
n1 =

[
∂ñ

∂ỹ

∂ñ

∂z̃

]

µ

[
Σy Σyz

Σzy Σz

] [
∂ñ

∂ỹ

∂ñ

∂z̃

]t

µ

. (26)

In order to be subject of improvement the output vari-

ance must depend on the design variables, a require-

ment that transfers to the derivatives in eqn (26).

The randomness of the safety factor can be caused

by each one of the arguments. For instance if the de-

sign variables are deterministic, the other, random in-

put gives rise to the variance

σ2
n1 =

(
∂ñ

∂ỹ

)

µ

Σy

(
∂ñ

∂ỹ

)t

µ

, (27)

As a rule random design variables contribute to the

variance. However, an unconstrained extremum of the

mean value of the safety factor in eqn (25) in the space

of the design variables satisfies the condition

(
∂ñ

∂z̃

)

µ
= 0, (28)

which reduces eqn (26) for the variance back to

eqn (27). At the extremum of the first-order mean the

covariance matrix Σz of the design variables is not ef-

fective, the contribution vanishes. If there is no other

random input the first-order variance of the safety fac-

tor becomes zero:

(σ2
n1) = 0. (29)

5 Probability of Failure

Reliability with respect to the plastic limit of the

loaded structure equals the probability that the safe

load multiplier is not less than unity: n ≥ 1. The

complementary measure is the probability of failure

Pf = P (ñ < 1) = P

(
ñ− µn

σn
<

1− µn

σn

)

= P (ñ < −β). (30)

The last expression implies testing of the standardized

variate

ñ =
ñ− µn

σn
, (31)

against the reliability index

β =
µn − 1

σn
. (32)

If a distribution function is available for the stan-

dardized variate ñ, the failure probability can be ob-

tained therefrom using −β as argument. A log-normal

distribution of ñ with parameters µ and σ suggests the

following reasoning

Pf = P (ñ < 1) = P (ln ñ < 0)

= P

(
ln ñ− µ

σ
< −µ

σ

)
. (33)

In the above, the standardized variable ñ = (ln ñ −
µ)/σ is normally distributed such that the failure
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Figure 2: Failure and survival probability for standard

normal distribution.

probability can be accessed from the standard normal

distribution Φ(ñ) with the negative value of the quan-

tity β = µ/σ as argument, (Fig 2).

In connection with the log-normal distribution

mean and variance of ñ are sufficient as resulting from

the foregoing stochastic analysis. They enter the com-

putation of the distribution parameters

σ2 = ln

(
σ2
n

µ2
n

+ 1

)
, µ = lnµn −

σ2

2
. (34)

More general, the failure probability is obtained

with the probability density function for ñ, if avail-

able, as

Pf =

∫

n≤1

fndn =

∫

n(α)≤1

fα(α)dα1dα2 · · ·dαq.

(35)

Evaluation of the first integral in eqn (35) presumes

knowledge of the probability density function fn(n)
of the safety factor. Eventually, the failure probabil-

ity is equated to the probability content of the basic

random input α̃ in the unsafe region n(α) ≤ 1. The

evaluation of the second integral in eqn (35) relies on

the joined probability density function fα(α).

6 Application of Stochastic Analysis

6.1 Definition of problem

The thick-walled circular cylinder in Fig. 3 is sub-

jected to internal pressure and deforms under the con-

dition of plane strain [2]. The yield mechanism for the

axial symmetric case in the context of perfect plastic-

ity is specified by the radial velocity

u̇(r) =
a

r
u̇a (36)

where u̇a = u̇(r = a) denotes the velocity at the in-

ner radius. Therefrom the associated plastic flow with

a

p

b
u(r)
.

r

0

1

1 2 3r/a

. .
u/ua

Figure 3: Thick-walled cylinder. Problem definition

and distribution of yield velocity.

radial strain rate component η̇r and tangential compo-

nent η̇t, the sum vanishing due to the isochoric condi-

tion. The equivalent strain rate is the scalar quantity

˙̄η =

√
2

3
(η̇2r + η̇2t ) =

2√
3

a

r

u̇a
r
. (37)

In deviatoric plasticity the work equivalence

σtη̇ = σ̄ ˙̄η =
√
3τ ˙̄η, (38)

is used in order to introduce the yield stress τ of the

material in shear in the expression for the dissipation

rate. The first equality is formal while the second one

involves the material parameter. Assuming a unique

yield stress throughout the material, the dissipation

rate for the unit length of the cylinder follows to

D =

∫

V

√
3τ ˙̄ηdV =

√
3τ

b∫

a

˙̄η(2πrdr)

= 2πau̇a2τ ln
b

a
. (39)

The rate of work of the pressure on the yield velocity

is

L = 2πapu̇a. (40)

The safety factor becomes

n =
D

L
= 2

τ

p
ln

b

a
. (41)
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6.2 Significance of random input

Apart from yield stress and pressure, inner radius a
and outer radius b of the cylinder may add to the ran-

domness. The random input is collected in the vector

array

α̃ = {τ̃ p̃ ã b̃}, (42)

with mean

µα = {µτ µp µa µb}, (43)

and covariance matrix

Σα =




σ2
τ 0 0 0

σ2
p σpa σpb

sym σ2
a σab

σ2
b


 . (44)

The covariance matrix reflects an assumed statistical

independence between the material yield stress τ and

the other input as from loading and geometry.

The derivatives entering the Taylor series expan-

sion in eqn (19) are,

(
dñ

dα

)

µ
=

[
ñ

τ̃
− ñ

p̃
− 2τ̃

p̃ã

2τ̃

p̃b̃

]

µ

, (45)

and

(
d2ñ

dα̃dα̃t

)

µ

=




0 − ñ
τ̃ p̃ − 2

p̃ã
2
p̃b̃

2ñ
p̃2

2τ̃
p̃2ã

− 2τ̃
p̃2b̃

sym 2τ̃
p̃ã2

0

− 2τ̃
p̃b̃2




µ

,

(46)

evaluated at the mean values of the input variables.

The second-order mean of the safety factor is deduced

as

(µn)2 = (47)

nµ


1 +

(
σp
µp

)2

 +

µτ

µp

[(
σb
µb

)2

−
(
σa
µa

)2
]

+ 2
µτ

µp

(
σpb
µpµb

− σpa
µpµa

)
,

where nµ = ñ(µα), the material yield stress still is

considered an independent variable, and with the third

term in eqn (47) vanishing in the case where all vari-

ables are uncorrelated. The first-order approximate of

the variance of the safety factor, eqn (21), becomes

(σn)
2
1 = n2

µ



(
στ
µτ

)2

+

(
σp
µp

)2

 (48)

+

(
2µτ

µp

)2 [(
σa
µa

)2

+

(
σb
µb

)2
]
,

which refers to uncorrelated variables.

The previous procedure operating with eqn (14)

and eqn (16) in terms of dissipation rate and rate

of work implies a preliminary step computing the

mean value and the variance of the functions L̃(α̃),

eqn (40), and D̃(α̃), eqn (39), as a well as the covari-

ance of the two quantities. The two-step procedure is

completed by the evaluation of eqn (14) for the mean

of ñ and of eqn (16) for the variance. Reproduction

of eqn (47) and eqn (48) confirms the equivalence to

the direct approach when using first-order means and

variances of D̃(α̃) and L̃(α̃).

6.3 Remarks on the input covariance matrix

Given the variances σ2
τ , σ

2
p, σ

2
a, σ

2
b of the individual

variables the interest is in the covariances. In the

absence of other information the following discusses

the covariance of variables as from virtual functional

dependencies. In a first approach fluctuations in the

yield stress τ̃ of the material are assumed independent

of those of geometry and loading such that

στp = στa = στb = 0. (49)

Inner radius ã and outer radius b̃ may be related by the

condition of constant cross-section area:

π(b̃2 − ã2) = constant ⇒ db̃

dã
=

ã

b̃
. (50)

This implies a dependence of the variances and intro-

duces covariance. To the first order for the variances,

σ2
b = E[(b̃− µb)

2] =

(
µa

µb

)2

σ2
a. (51)

For the covariance,

σab = E[(ã− µa)(b̃− µb)] =
µa

µb
σ2
a. (52)

Constancy of the applied force, if required, ad-

justs the pressure p to the inner radius a:

2πãp̃ = constant ⇒ dp̃

dã
= − p̃

ã
. (53)

This relates the variances by

σ2
p = E[(p− µp)

2] =

(
µp

µa

)2

σ2
a, (54)

and implies the covariance

σpa = E[(p̃− µp)(ã− µa)] = −µp

µa
σ2
a. (55)
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The covariance with the outer radius is

σpb = E[(p̃− µp)(b̃− µb)]

= −µp

µa
σab = −µp

µb
σ2
a. (56)

For the aforementioned conditions the covariance

matrix of the input variables, eqn (44), becomes

Σα = σ2
a




σ2
τ

σ2
a

0 0 0
(
µp

µa

)2
−µp

µa
−µp

µb

1 µa

µb(
µa

µb

)2




(57)

This accounts for a constant cross-section area in ad-

dition to the constancy of the force resulting from the

applied pressure.

6.4 Yield stress as a random field

The yield stress may vary with the position within the

material as a random field. The expression for the dis-

sipation rate must account for this variation in space

D̃ =

∫

V

√
3τ̃ η̇dV. (58)

The expectation gives the mean value

µD = E



∫

V

√
3τ̃ η̇dV


 (59)

=

∫

V

√
3µτ η̇dV =

√
3µτ

∫

V

η̇dV.

The last, simplified form is applicable if the random

field is homogeneous in the mean. In addition, the

mean yield stress of an ergodic field equals the aver-

age within a single sample.

Regarding the variance of the dissipation rate the

difference (D̃ − µD) is squared

(D̃ − µD)
2 =∫

V

√
3(τ̃ − µτ )(x)η̇(x)dV

×
∫

V

√
3(τ̃ − µτ )(x

′)η̇(x′)dV ′, (60)

where x, x′ denote individual positions within the

material volume. The expectation defines the variance

of the dissipation rate

σ2
D =

∫ ∫
3στ (x,x

′)η̇(x)η̇(x′)dV dV ′. (61)

3

1 2

4

2

4

χ=a−r

=b−rχ

a b r

r’

b r

b

a

a

1 3

b−a

a−b

χ=r’−r

Figure 4: Change of variables.

The integrand involves the auto-covariance of the ran-

dom field τ̃(x)

στ (x,x
′) = E[(τ̃ − µτ )(x)(τ̃ − µτ )(x

′)]. (62)

In case where the plastic flow field is also random the

above formalism applies to the product (τ̃ η̇).
Next the yield stress of the cylinder material is

considered a random function of the radius, all other

quantities deterministic. In this case the dissipation

rate for the unit length is not expressed by eqn (39); it

is stated as

D̃ =

b∫

a

√
3τ̃(r)η̇(r)2πrdr = 2πau̇a

b∫

a

2τ̃(r)
dr

r
.

(63)

The mean value is

µD = 2πau̇a

b∫

a

2µτ (r)
dr

r
= 2πau̇a2µτ ln

b

a
. (64)

The last expression, valid for a homogeneous field, is

as for a random yield stress constant throughout the

material. Also eqn (61) is interpreted for a homoge-

neous field where the auto-covariance depends on the

distance between points, not on the distinct positions.

Then the variance

σ2
D =

∫

a

b∫
3στ (r, r

′)η̇(r)η̇(r′)2πrdr2πr′dr′

= (4πau̇a)
2
∫

a

b∫
στ (r − r′)

rr′
drdr′. (65)

This suggests employment of the variables [5]

r and χ = r′ − r, (66)
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r

b

τ

a

µ

~

Figure 5: Harmonic variation of yield stress with ran-

dom phase.

such that the variance of the dissipation rate for a ho-

mogeneous random field τ̃(r) becomes (see Fig. 4),

σ2
D = (4πau̇a)

2





0∫

a−b




b∫

a−χ

στ (χ)

r2 + χr
dr


dχ

+

b−a∫

0




b−χ∫

a

στ (χ)

r2 + χr
dr


 dχ




. (67)

Evaluation of the inner integral leaves,

σ2
D = (4πau̇a)

2




0∫

a−b

στ (χ)

χ
ln

ab

(a− χ)(b+ χ)
dχ

+

b−a∫

0

στ (χ)

χ
ln

(a+ χ)(b− χ)

ab
dχ


 . (68)

The harmonic wave serves as an example

τ̃(r) = τ0 +A sin(ωr + ϕ̃), (69)

with τ0, A, ω fixed while ϕ̃ is uniformly random in

the interval [−π, π], (Fig. 5). The mean value µτ =
τ0 and the variance σ2

τ = A2/2 do not vary along

the radius. The auto-covariance is a function of the

distance between positions along the radius:

στ (r, r
′) = E[A sin(ωr + ϕ̃)A sin(ωr′ + ϕ̃)]

=

π∫

−π

A2 sin(ωr + ϕ) sin(ωr′ + ϕ)
1

2π
dϕ

=
A2

2
cosω(r − r′) = στ (r

′ − r). (70)

Use of the above result with r′ − r = χ in eqn (68)

returns the integral to be evaluated for the variance of

the dissipation rate in this particular case.

6.5 Optimum inner radius

The optimization of the safety factor will be inves-

tigated for the thick-walled cylinder in Fig. 3; first-

and second-order approximation are contrasted. The

inner radius is the single random design variable all

other input fixed. The applied pressure is assumed ad-

justed to the variation of the radius such that the prod-

uct (ap) = constant. The safety factor of eqn (41)

then is replaced by the form

ñ(ã) =
2τ

(ap)
ã ln

b

ã
. (71)

This is a function of the inner radius ã, the design

variable. The first-order expansion of ñ(ã) about the

mean value of the argument gives

µn1 = ñ(µa) =
2τ

(ap)

(
ln

b

µa

)
µa (72)

for the mean, and the variance

σ2
n1 =

(
dñ

dã

)2

µ
σ2
a =

[
2τ

(ap)

(
ln

b

µa
− 1

)]2
σ2
a.

(73)

The mean assumes an extremum for

ln
b

µa
= 1, (74)

which in eqn (72) specifies the maximum safe load

multiplier

max(µn1) =
2τ

(ap)
µa, (75)

with µa from eqn (74). At the same time the variance

in eqn (73) is seen to vanish and so the standard devi-

ation

(σn1)max = 0. (76)

The second-order approximation of the mean is

µn2 = µn1 +
1

2

(
d2ñ

dã2

)

µ

σ2
a

=
2τ

(ap)

(
ln

b

µa
− 1

2

σ2
a

µ2
a

)
µa. (77)

An extremum in conjunction with σ2
a = constant is

obtained for

ln
b

µa
= 1− 1

2

σ2
a

µ2
a

. (78)

Accounting for in eqn (77) now gives the maximum

mean of the safe load multiplier as

max(µn2) =
2τ

(ap)

(
1− σ2

a

µ2
a

)
µa, (79)
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with the mean radius from eqn (78). The associated

first-order variance from eqn (73) determines the stan-

dard deviation

σn1|max 2 =
2τ

(ap)

1

2

σ2
a

µ2
a

σa. (80)

Instead of the variance of the inner radius, the de-

sign variable, next the standard deviation is kept con-

stant: σa/µa = constant. In this case the mean safety

factor of eqn (77) becomes a maximum for the mean

inner radius from

ln
b

µa
= 1 +

1

2

σ2
a

µ2
a

. (81)

The appertaining mean safety factor from eqn (77)

formally is as in eqn (72) from the first-order study

but the mean inner radii differ. The variance from

eqn (73) is as for σ2
a = constant; eqn (80) for the

standard deviation is still applicable. With this the co-

efficient of variation of the safety factor at maximum

second-order mean

(
σn1
µn2

)

max

=
1

2

(
σa
µa

)3

, (82)

is seen to assume a much smaller value than the input

σa/µa.

Summarizing, mean optimization with the first-

order expansion of the safety factor makes the vari-

ance vanish; a result that previously has been stated

in more general terms. The second-order expansion

along with σ2
a = constant associates a diminished op-

timum to a higher inner radius. For σa/µa = constant

the maximum mean safety factor is formally as for

the first-order but the appertaining inner radius lower.

However, the differences are small, second-order the

coefficient of variation of the inner radius, the design

variable. The variance at the second-order optimum is

not zero: for either of the above constraints the stan-

dard deviation is by the squared coefficient of varia-

tion proportional to that of the inner radius.

6.6 Assessment of the failure probability

In eqn (35) the first and the last integral indicate two

different approaches to the determination of the fail-

ure probability. They will be elucidated for the hollow

cylinder problem whose safety factor is specified in

eqn (41). For the purpose of demonstration the quo-

tient of the outer to the inner radius is considered as

a single random input variable: α̃ = ˜(b/a). From

eqn (41),

α =
b

a
= exp

pn

2τ
, (83)

which limits the region of unsafe input 0 ≤ ñ ≤ 1 to

1 ≤ α̃ ≤ exp
p

2τ
. (84)

If a probability density function fα(α) is available, the

last integral in eqn (35) furnishes the failure probabil-

ity as

Pf =

∫

n(α)≤1

fα(α)dα =

exp p

2τ∫

α=1

fα(α)dα. (85)

Evaluation may be analytical or numerical by Monte

Carlo integration techniques.

Alternatively, determination of the failure proba-

bility by the first integral in eqn (35) presumes knowl-

edge of the probability density function of the safety

factor ñ, an evenly increasing function of the input α̃.

It is inferred that Fn and Fα[α(n)] of the two quanti-

ties are equal. This gives the probability density func-

tion of n as

fn(n) =
dFn(n)

dn
=

dFα[α(n)]

dα

dα(n)

dn

= fα[α(n)]
dα(n)

dn
. (86)

Specifying on account of eqn (83),

fn(n) = fα

(
exp

pn

2τ

)
p

2τ
exp

pn

2τ
. (87)

The failure probability follows to

Pf =

∫

n≤1

fn(n)dn (88)

=
p

2τ

1∫

n=0

(
exp

pn

2τ

)
fα

(
exp

pn

2τ

)
dn,

which implies nothing but a change of variables with

respect to the integral in eqn (85).

The determination of the failure probability is

simple in the case of a log-normal input variable α̃.

From P (ñ < 1) = P [α̃(ñ) < α̃(1)],

Pf = P (ñ < 1)

= P

[
ln α̃(ñ)− µ

σ
<

ln α̃(1)− µ

σ

]
. (89)

The standardization is with the parameters µ and σ
of the log-normal distribution. These are related to

the mean and the variance of the original variable α̃
analogously to eqn (34). The failure probability now
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Figure 6: Two-dimensional unsafe region.

can be accessed from the standard normal distribution

as Pf = Φ(−β) with the negative value of the quantity

β =
µ− ln α̃(1)

σ
=

1

σ

(
µ− p

2τ

)
(90)

as argument.

6.7 Two-dimensional input space

A two-dimensional input space for the hollow cylinder

will be defined by the random variables

α̃1 =
˜( p

2τ

)
, α̃2 =

(̃
b

a

)
. (91)

One refers to the magnitude of the loading, the other

to the geometry of the cross-section. In terms of the

above variables eqn (83) assumes the form

α̃2 = exp α̃1ñ. (92)

The input is unsafe for 0 ≤ n ≤ 1 within the region

0 ≤ α̃1 ≤ ∞, 1 ≤ α̃2 ≤ expα1, (93)

indicated in Fig. 6.

Implementation in eqn (35) gives the failure

probability for the actual case

Pf

∞∫

α1=0

expα1∫

α2=1

fα1,α2
(α1, α2)dα2dα1 =

∞∫

α1=0

fα1
(α1)




expα1∫

α2=1

fα2
(α2)dα2


 dα1. (94)

The last expression refers to statistically independent

input variates α̃1, α̃2 such that the joined probability

density function is composed of the individual ones

by multiplication: fα1,α2
(α1, α2) = fα1

(α1)fα2
(α2).
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0 1

α 2

µ  − ε

µ  + ε

µ  + εµ  − ε

2 2

1 1 1 1

2 2

α

= exp= exp α1

Figure 7: Truncated domain of integration.

Evaluation of eqn (94) for independent uniform

distributions in the interval

0 ≤ α̃1 ≤ 1, 1 ≤ α̃2 ≤ e, (95)

with fα1
= 1, fα2

= 1/(e − 1) for the probability

densities determines the failure probability

Pf =

1∫

0




expα1∫

1

dα2

e− 1


 dα1 (96)

=

1∫

0

eα1 − 1

e− 1
dα1 =

e− 2

e− 1
= 0.418.

More realistic constellations are defined by mean

value µ and tolerance ε of the independent uniform

variates:

µ1 − ε1 ≤ α̃1 ≤ µ1 + ε1,

µ2 − ε2 ≤ α̃2 ≤ µ2 + ε2. (97)

For convenience the interval limits are abbreviated as

ε1 = µ1 − ε1, ε1 = µ1 + ε1

ε2 = µ2 − ε2, ε2 = µ2 + ε2. (98)

With reference to Fig. 7, if the domain of integration

is entirely within the unsafe region (n < 1) one con-

firms for the failure probability

Pf =

ε1∫

ε1

dα1

2ε1

ε2∫

ε2

dα2

2ε2
= 1. (99)

Analogously the probability of survival being Ps = 1
in case that the variation of the input does not exceed

the safe region (n > 1).
In case that only part of the input is within the un-

safe region the determination of the failure probability
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demands more attention. Defining the quantities

∆ =
ln ε2 − ε1 + | ln ε2 − ε1|

2
,

∆ =
ε1 − ln ε2 + |ε1 − ln ε2|

2
, (100)

the integration is executed in accordance to

Pf =




ε1−∆∫

ε1+∆




expα1∫

ε2

dα2

2ε2




dα1

2ε1


+ 2ε2∆. (101)

Evaluation of the above expression with the num-

bers

α̃1 : µ1 = 0.5, ε1 = 0.45, ε1 = 0.55, 2ε1 = 0.1,

α̃2 : µ2 = 1.5, ε2 = 1.35, ε2 = 1.65, 2ε2 = 0.3,

gives ∆ = 0, ∆ = 0.55− ln 1.65, and

Pf =

ln 1.65∫

0.45




expα1∫

1.35

dα2

0.3


 dα1

0.1
+ 0.3(0.55− ln 1.65)

=
1

0.03

ln 1.65∫

0.45

(eα1 − 1.35)dα1 + 0.3(0.55− ln 1.65)

=
1.65− e0.45 − 1.35(ln 1.65− 0.45)

0.03
+0.3(0.55− ln 1.65)

= 0.445.

The probability of survival is Ps = 1− Pf = 0.555.

7 Structural Assemblies

The following considers structures assembled of a

number of individual components. Given the random-

ness of the components, the properties of the assem-

bly are to be assessed. For the sake of transparency

the issue is referred to truss structures assembled of

bar members.

7.1 Randomness of the system

The dissipation rate at the plastic limit of a truss struc-

ture consisting of K bar members is

D̃ = δtS̃. (102)

The vector array S̃ = {S̃j} comprises the random

yield forces S̃j > 0, j = 1 · · ·K of the individual

bars. The vector array

δ = |au̇| (103)

defines the magnitude δj ≥ 0 of the elongation rate

of the members as from the N nodal velocities u̇ at

yield.

It is assumed that the randomness of the mem-

bers is such that the deformation mechanism is not

affected. Then the mean value of the dissipation rate

in eqn (102) is

µD = E[δtS̃] = δtµS, (104)

where the vector array µS comprises the mean values

of the K yield forces. The variance of the dissipation

rate requires knowledge of the covariance matrix ΣS

of the yield forces

σ2
D = E[(D̃ − µD)

2] (105)

= δtE[(S̃− µS)(S̃− µS)
t]δ = δtΣSδ.

Particular cases are pointed out next. For bar yield

forces equal in the mean, µ1 · · ·µK = µS,

µS = µSe, e = {1 1 · · · 1}, (106)

the mean dissipation rate is

µD = µSe
tδ = µS

K∑

j=1

δj . (107)

In the case of equal variances σ2
1 · · ·σ2

K = σ2
S it is

worth distinguishing two extremes. If the yield forces

vary independently there are not off-diagonal entities

in the covariance matrix

ΣS = σ2
S⌈1⌋ = σ2

SI. (108)

The variance of the dissipation rate becomes,

σ2
D = σ2

S(δ
tδ) = σ2

S

K∑

j=1

δ2j . (109)

If, on the other hand, the yield force varies simultane-

ously in all bars,

ΣS = σ2
SE, E =




1 · · · 1
...

...

1 · · · 1


 = (eet), (110)

and the variance of the dissipation rate is

σ2
D = σ2

S(δ
tEδ) = σ2

S(
K∑

j=1

δj)
2. (111)

The result of eqn (111) for equal and simultane-

ous variation of the yield force in the bars is as for a

single variate S̃ applying uniquely to all bar members:

S̃ = S̃e. (112)
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Considering in eqn (105),

σ2
D = E[(S̃ − µS)

2](etδ)2 = σ2
S(

K∑

j=1

δj)
2, (113)

which reproduces eqn (111).

The rate of work of random nodal forces Q̃ on the

yield velocities u̇ is

L̃ = u̇tQ̃ (114)

with mean and variance,

µL = u̇tµQ, σ2
L = u̇tΣQu̇. (115)

The vector array µQ comprises the mean values of

the applied forces, and ΣQ is the covariance matrix.

Particular cases can be distinguished in analogy to the

yield forces of the bar members.

Assuming independence, mean value and vari-

ance of the rate of work and the dissipation rate en-

able an estimation of the reliability index. Using in

eqn (32) the approximations of eqn (14) and eqn (16)

for the mean and the variance of the safe load multi-

plier,

β =
µn − 1

σn
=

1− µL

µD
+

σ2
L

µ2
L√

σ2
L

µ2
L

+
σ2
D

µ2
D

. (116)

The quantities entering eqn (116) are

µD

µL
=

δtµS

u̇tµQ

,

σ2
L

µ2
L

=
u̇tΣQu̇

u̇tµQµ
t
Qu̇

,
σ2
D

µ2
D

=
δtΣSδ

δtµSµ
t
Sδ

. (117)

If the system is homogeneous in the means,

µD

µL
=

µS

µQ

K∑
δj∑

N
u̇i
, (118)

and for independent variations,

σ2
L

µ2
L

=
σ2
Q

µ2
Q

N∑
u̇2i

(
∑
N
u̇i)2

,
σ2
D

µ2
D

=
σ2
S

µ2
S

K∑
δj

2

(
∑
K

δj)2
. (119)

Alternatively, accounting for simultaneous variation

of members and of actions,

σ2
L

µ2
L

=
σ2
Q

µ2
Q

,
σ2
D

µ2
D

=
σ2
S

µ2
S

. (120)
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Figure 8: Assembly in series. Statically determinate

system.

7.2 Components in series

Components are assembled in series if failure of a sin-

gle one implies failure of the structure. Conversely,

the structure sustains the loading as long as all com-

ponents are below the plastic limit. Given the reliabil-

ity of the K components Psj , j = 1, · · · ,K, and as-

suming statistical independence, the reliability of the

structure with respect to the plastic limit is

Ps = Ps1Ps2 · · ·PsK =
K∏

j=1

Psj . (121)

The probability of failure for the system in series is

Pf = 1− Ps = 1−
K∏

j=1

Psj . (122)

From the reliability point of view structural as-

semblies are in series if successful operation requires

all components to be stressed below the plastic limit.

As an example the plane truss in Fig. 8 will fail

by plastic collapse when anyone of the bar members

reaches the yield limit of the perfectly plastic material

[4]. The resistance capacity of the bar members, the

yield force, is assumed normally distributed according

to

S̃ ∼ N(115.5kN, 12kN2), (123)

and the applied force according to

Q̃ ∼ N(175kN, 64kN2). (124)

The seven bar members carry forces λjQ̃, with a

distance to the yield limit

Z̃j = S̃j − |λj |Q̃, j = 1, · · · , 7, (125)

The probability of failure by the plastic limit is trans-

ferred according to

Pfj = P (ñj < 1) = P (Z̃j < 0) = P (Z̃j < −βj),
(126)
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where Z̃j refers to the standardized distance which

determines the individual reliability index

βj =
µZj

σZj
=

µS − |λj |µQ√
σ2
S + λ2

jσ
2
Q

, j = 1, · · · , 7. (127)

The evaluation with the coefficients λj from

Fig. 8 gives

β1 = β2 = 15.608, β3 → β7 = 2.505.

The failure probability of the bar members follows

from the standard normal distribution as

Pf1 = Pf2 = Φ−1(−15.608) = 0,

Pf3 → Pf7 = Φ−1(−2.505) = 0.006122,

with reliability

Ps1 = Ps2 = Φ−1(15.608) = 1

Ps3 → Ps7 = Φ−1(2.505) = 0.993878.

The probability for the assembly in series to stay be-

low the plastic limit then is computed to

Ps =
7∏

j=1

Psj = (Ps1Ps2)(Ps3Ps4Ps5Ps6Ps7)

= (12)(0.9938785) = 0.969763,

with a probability of failure for the truss by plastic

collapse

Pf = 1− Ps = 0.030237,

which is five times higher than for the bar members

with the high risk.

A decreasing number of constituents in series en-

hances the reliability of the structural assembly. For

instance, if the force is instead carried by a two-bar

truss, (Fig. 9), all other data unchanged, the reliability

of the system with respect to plastic collapse is

Ps = 0.9938782 = 0.98779, Pf = 0.012206.

It is noted that the two-bar truss in Fig. 9 is nothing but

the middle part of the seven-bar structure in Fig. 8.

8 Conclusion

The study deals with the significance of randomness

with regard to the limit state of perfectly plastic solids.

In this connection the formal background has been

presented for the main issues which concern stochas-

tic analysis, robustness against randomness and relia-

bility with respect to the plastic limit; essential tasks
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Figure 9: Two-bar assembly.

have been treated with reference to a unique example.

The subject of structural assemblies has been ap-

proached from a restricted point of view with the in-

tention to expound in a separate account. Follow-

ing throughout an elementary analytic approach aims

at elucidating the influence of participating variables.

Complex problems are accessible to numerical solu-

tion by computational techniques [4], employing also

statistical simulation [6], which has not been the pur-

pose of the present study.
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